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ABSTRACT

MODELING OF STRUCTURAL-ACOUSTIC INTERACTION USING

COUPLED FE/BE METHOD AND CONTROL OF INTERIOR

ACOUSTIC PRESSURE USING PIEZOELECTRIC ACTUATORS

Yucheng Shi

Department of Aerospace Engineering, Old Dominion University

Advisor: Dr. Chuh Mei

A coupled finite element (FE) and boundary element (BE) approach is presented

to model full coupled structural/acoustic/piezoelectric systems. The dual reciprocity

boundary element method is used so that the natural frequencies and mode shapes of the

coupled system can be obtained, and to extend this approach to time dependent problems.

The boundary element method is applied to interior acoustic domains, and the results are

very accurate when compared with limited exact solutions. Structuralmacoustic problems

are then analyzed with the coupled finite element/boundary element method, where the

finite element method models the structural domain and the boundary element method

models the acoustic domain. Results for a system consisting of an isotropic panel and

a cubic cavity are in good agreement with exact solutions and experiment data. The

response of a composite panel backed cavity is then obtained. The results show that the

mass and stiffness of piezoelectric layers have to be considered.

The coupled finite element and boundary element equations are transformed into

modal coordinates, which is more convenient for transient excitation. Several transient

problems are solved based on this formulation.

Two control designs, a linear quadratic regulator (LQR) and a feedforward controller,

are applied to reduce the acoustic pressure inside the cavity based on the equations in

modal coordinates. The results indicate that both controllers can reduce the interior

acoustic pressure and the plate deflection.
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The research results contained in this technical report were performed under a NASA
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Chapter 1

INTRODUCTION

1.1 Preliminary Remarks

The physical manifestation of sound is a time-dependent pressure fluctuation around

the static pressure in a compressible fluid, such as air or water. One such source for

these pressure fluctuation is a vibrating elastic structure. The fluctuating pressure on

the surface of the structure constitutes the radiation loading. Generally, because of

the low density of air compared to structural materials, radiation loading exerted by the

atmosphere is usually small enough to have a negligible effect on the structural vibrations.

Consequently, the two theoretically coupled systems, the elastic structure and its dynamic

response within the atmosphere under prescribed driving forces and the acoustical pressure

field generated by the velocity distribution over the structure-atmosphere interface, can

be analyzed independently.

However, this is not always the case. For example, when a volume of air in

contact with the structure is confined in a small enclosure, or when the structure is

exceptionally light, the influence upon the structural motion due to radiation loading has

to be considered. In those circumstances, the structure vibrating in air is more like a

structure vibrating in contact with a fluid of comparable density, where radiation loading

is comparable to the inertial and elastic forces of the structure. Hence, the elastic and

acoustical dynamics, and their interactions, must be modeled simultaneously.

True structural-acoustic systems can be found in numerous industrial applications

such as interior noise, or noise transmitted into a cavity. For example, the sound inside

a fuselage of an aircraft with engines or fluid flow as outside sound sources, or the noise

inside the automobile passenger compartment with the engine or driveline vibration or

body vibration as the outside sources are important engineering problems. Shown in

Figure 1.1 is a general sketch of these types of problems. The sound sources and the

cavity are separated by an elastic structure. The vibration of the elastic structure, here a

flexible plate, is excited by radiation loading on the exterior surface of the plate due to



the soundsource.This inducesa soundpressurefluctuationfield inside the cavity due

to the velocity distribution on the inner surfaceof the plate. The coupling betweenthe

acousticfield andstructurevibrationon theoutersurfaceis negligiblebecauseof the low

densityof air comparedto thestructuralmaterial.Radiationloadingon the outersurface

of the flexible plate actslike an externalforce only and the plate hasno effect on the

outsideacousticfield exceptreflectionand absorbing.On the other hand,the coupling

betweentheplate vibrationandthe acousticfield insidethecavity hasto be considered.

Acoustic Source

External Load

Plate/Piezoelectric Material

Internal Acoustic Domain

Other Boundary of Cavity

Figure I. 1 The structural-acoustic interaction problem

Over the past several decades, aerospace and automotive industries have given more

attention to acoustic excitation, because this is not only a passenger comfort issue but

also a safety concern. The acoustic pressure level outside an aircraft fuselage can reach



164dBIll, and maygo ashighas 190dB[2l for some new supersonic aircraft, indicating

radiation loading on the fuselage is an important design parameter. Under such conditions,

the interaction between the internal acoustic field and the structure vibration becomes

extremely important. Mathematical models which can predict the response of the coupled

structural--acoustic system under prescribed external forces becomes a necessary tool

for designers.

The prediction of the sound pressure field inside the cavity and the dynamic response

of the plate is not the final goal of analysts. Other objectives are to reduce the inside

pressure level and the structure vibration. These objectives are not independent of the

modeling of the structural-acoustic interaction. In addition to the requirement for a control

system, more features are required in the coupled structural--acoustic mathematical

model to represent the control design based on piezoelectric materials.

1.2 Review of Previous Work

Research in both the modeling of the structural-acoustic interaction problem and the

active control of structurally transmitted noise has been performed. In this section, a

brief review of both topics is given.

Modeling of Structural-Acoustic Interaction

It is not until recent years that the structural-acoustic interaction problem has captured

interest in the aerospace and automotive industries. However, the basic problem is an

old one. The oldest studies can be traced back to World War I, when Rayleigh published

the first modern text on acoustics, the Theory of Sound [3l. He formulated the equation of

motion of a rigid spring piston radiating into an acoustic fluid, and considered the effect

of the acoustic fluid by increasing the damping and mass of the single-degree-of-freedom

system.J41

Even the study of radiation of sound by a vibrating structure into an acoustic cavity

has a history of more than 30 years. The first investigation was performed by Lyon [5l in

1963. In his work, a rectangular plate backed by a rectangular cavity was studied in a

straightforward but approximate manner. This problem was then investigated by many



researcherssuchasDowell andVoss [6], Bhattacharya and Crocker[71, Guy[ 8, 91, McDonald

et al. [l°l. In 1977, Dowell, Gorman, and Smith I! II derived the general governing equation

for the coupled structural-acoustic system, so-called "acoustoelasticity". In this classic

paper, a comprehensive theoretical model was developed for interior acoustic fields

which were created by flexible wall motion resulting from exterior sound fields, and

accurate coupling between the wall and interior acoustic cavity was considered. A modal

interaction approach, which assumed that the coupled modes of the cavity wall system can

be expressed as a linear combination of the rigid wall cavity acoustic modes and invacuo

plate modes, was also proposed for multiply connected cavities. The comparison of the

numerical results and experiment data was shown to be in good agreement It II. Based on

Dowell's formulation, extensive works by others in the field followed 112-16]. BokilIl7l

obtained a closed-form solution for the acoustic pressure transmitted through a rectangular

cavity backed flexible plate.

On the other hand, in 1966, Gladwell and Zimmermann [181 developed an energy

formulation of the acoustic-structure interaction problem, this paper set the stage for

the application of finite element methods to cavity-structure analysis. This numerical

method makes the consideration of complex cavity and structure geometry, structure

boundary condition, and acoustic boundary condition conceptually no more difficult than

simpler problems. Three different formulations were derived using the pressure [19-23|,

fluid particle displacement [24-27], or velocity potential [281 as the fundamental unknowns

in the fluid region. The finite element approach for the structural-acoustic interaction

problem seems well developed. In 1970's, even the computer tool NASTRAN had

the capability of cavity-structure analysis I29,3°1. Neffske et al. [3H analyzed the acoustic

pressure field of complex automobile passenger compartments using NASTRAN in 1980

and found good agreement with experiment data.

As a powerful alternative to the finite element method, the boundary element method

(BEM) or the boundary integral element method (BIEM) had its beginnings in the early

1960s based on the boundary integral equation theory developed in 1800s and 1900s [321.

This method was first applied to the acoustic area to solve an acoustic radiation problems



by Chenand Schweikertin 1963[33l,followed by extensiveresearchwork from 1960sto

1990s[34-'421. Most of the boundary element method applications in acoustics focused on

the acoustic radiation and scattering problems, where boundary element methods have an

incompatible advantage for dealing with infinite domain. Not until 1982 did Koopmann

and Benner present the application of this method to internal domains[431. Suzuki et al. [441,

Tanaka and Masuda[45,46], Mariem and Hamdi [471, and Pates[481 applied this method

to structural-acoustic interaction problems assuming a sinusoidal time dependence. A

common feature of those investigations is the joining of the boundary element method

with the finite element method. The finite element method was used to model the

structures, while fluid domain was handled by a boundary element method.

The most important issue for boundary element methods is the selection of the

fundamental solutions. For an internal acoustic problem, the general governing equation is

the well-known three dimensional wave equation. Based on various different assumptions,

different choices of the fundamental solution lead to different approaches[491. If the

fundamental solution of the wave equation is selected 15°l, the boundary element equations

need no domain integral, but it becomes impossible to form an eigenvalue problem to

obtain eigenvectors. If the fundamental solution of the Laplace operator is used, the

time-dependent term will inevitably lead to domain integrations[51].

Active Control of Acoustic Pressure Level Inside the Cavity

There are two different concepts in active noise control, one is the use of secondary

sound sources, such as microphones, to reduce the undesired noise[52-631, the other is to

reduce the original noise source [64"681. For transmitted acoustic pressure through elastic

structure, using piezoelectric materials embedded in the structure to reduce the pressure

level belongs to the later case. The piezoelectric actuators will control the vibration of

the elastic structure so that the acoustic pressure level transmitted inside the cavity can

be reduced. Note the objectives of active control may involve more than just reduction

of structure deflection.



Early attemptsat reducingradiatedsoundfrom a vibratingstructureby activecontrol

utilizedpoint forcesin afeedforwardcontrolloop[57,58].This approachwasthenextended

to applying bendingmomentsand in-plane forcesusing piezoelectricactuators[64,661

Analytical and experimentalwork supportedthe feasibility of using active vibration

control through force inputs in structuresto reduceinterior cavity noise level[65,68I

However, most all studieshave beenbasedon modal analysisor frequencyresponse

input/outputanalysis,which does not include direct coupling of the structureand the

acousticcavity[68]. Bankset al.[66, 67] proposed a time-domain state space formulation

based on the finite element model of a two-dimensional rectangular cavity backed by

an isotropic beam. The structural-acoustic interaction was considered, but the coupling

between the structure and the piezoelectric actuators was not complete. Only the control

force from the actuators was included, the mass and stiffness of the actuator, or the

piezoceramic patches, were ignored.

On the other hand, the control system design based on the coupled structural-

acoustic model was performed using secondary sound sources t52,541. Snyder et al. [561

presented a theoretical framework suitable for control system design. They proposed

various control objectives such as minimization of acoustic potential energy in the cavity,

minimization of acoustic pressure amplitude at a discrete location, or minimization of

structure kinetic energy. Thomas et al. [6°, 61] presented a numerical control simulation of

sound transmission through a cylindrical shell using secondary sources. Results indicated

the possibility of reducing the acoustic potential energy in the cylinder and the acoustic

pressure amplitude at a discrete location using various weighting matrices in a linear

quadratic regulator controller.

1.3 Objective and Outline

The overall objective of the present study is to apply available control techniques

to reduce the transmitted acoustic pressure level inside the cavity. To perform this task,

three steps are required. The first objective is to develop a coupled finite element and

boundary element method to model the structural-acoustic system. The second step is

6



to transform the coupled equations into the time-domain modal formulation. The third

step is to apply the linear quadratic regulator and least-mean-square (LMS) controllers to

reduce the sound pressure level inside the cavity based on the modal formulation.

Since the control design is based on the numerical model, some restriction must

be considered in the structural-acoustic model. The finite element method used to

model the flexible plate has to be able to deal with non-homogeneous materials, that

is, a composite laminate with embedded piezoelectric material layers. This involves

not only the mechanical and electric coupling properties of piezoelectric materials, but

also the mass and stiffness of the piezoelectric layers which have never been considered

in studies reported in the literature. This feature can be easily accommodated with

the versatility of the finite element method, but the requirement of transient response

predictions on the combined finite element and boundary element method for the coupled

structural-acoustic system does need some additional effort, specially for the boundary

element model of the acoustic cavity. The boundary element method used has to be

able to handle the time-dependent loads and also be able to calculate the eigenmodes

of the coupled system. The dual reciprocity boundary element method [69. 70] is used in

present study, this new coupled finite element and boundary element method introduces

an innovative and powerful approach. The formulation of the finite element method

for a composite plate with embedded piezoelectric material layers, the dual reciprocity

boundary element method for the time-dependent acoustic problem, and the coupled finite

element and boundary element method for the structural-acoustic interaction problem are

all developed in Chapter 2. The numerical results and their comparison with exact

solutions, experimental data, and other numerical approaches are given in Chapter 3.

The modal formulation is also given in Chapter 2 with numerical results for various

loading cases presented in Chapter 3. To transform the coupled equation into modal

formulation, the modal coordinates, or the basis of the solution space, has to be determined

first. The modal shapes of the coupled structural-acoustic system are used here rather

than the uncoupled modal shapes. One of the advantages of this treatment is that the

basis will yield a set of uncoupled differential equations, instead of coupled equations.



The control portion of this study is to demonstrate that control laws can be applied to

reduce acoustic transmission effectively. The linear quadratic regulator shows how much

one can reduce the transmitted sound level in a theoretical sense. The feedforward least-

mean-square control law is an attempt to design a more practical controller. The control

formulations and numerical results are all given in Chapter 4. Concluding remarks and

recommendations for future work are presented in Chapter 5.



Chapter 2

COUPLED FINITE ELEMENT AND BOUNDARY ELEMENT

METHOD FOR STRUCTURAL-ACOUSTIC INTERACTION

In this chapter, the finite element method for a composite plate with embedded

piezoelectric layers is developed, and the dual reciprocity boundary element formulation

for acoustic problem is derived. Following this treatment, the finite element method and

boundary element method are coupled together to form the discrete governing equations

for the structural-acoustic interaction problem.

2.1 Coupled Finite Element Equation of

Motion of Composite/Piezoelectric Materials

The finite element method has become a very powerful tool in the analysis of static

and dynamic response of structures. This method is capable of handling structures having

complex geometries, non-uniform materials, and complex boundary conditions. The

objective here is to develop a finite element model to describe the coupling between a

plate or structure and piezoelectric materials.

2.1.1 Piezoelectricity

It is well known that piezoelectric materials can be used as actuators and sensors

due to their direct and converse effects [71]. To model these effects, a formulation

with mechanical and electrical coupling should be considered. This electromechanical

formulation presented here is based on the linear piezoelectricity theory [72, 73] In this

section, the general piezoelectric constitutive equations are briefly reviewed, and related

piezoelectric constants are defined.

The electric enthalpy H is defined as the amount of energy stored in the material [721

H = U- F:. 5 (2.1)

where U is the total internal mechanical energy, /_ and /) are the electric field and

electric displacement vectors, respectively. Let _ and g" be the mechanical stress and



strain tensors,they are relatedthrough the electric enthalpy as[72]

OH

a = 0--'_" (2.2)

Similarly, we have the relationship between the electric field vector and displacement

vector as [721

3= OH
0/_ (2.3)

The electric enthalpy H is assumed to have a homogeneous quadratic form in the

linear piezoelectric theory, which includes the contributions from elastic strain energy,

piezoelectric energy, and electric energy and is given by

1 1

H = _{eIT[Q]{e} - {EIT[e]{e} ---_{EIT[w]{E} (2.4)

where superscriptT representstranspose,[Q] isthe stiffnessmatrixassumed independent

on electricfield,[w] is the dielectricmatrix assumed independent on swain, and [e]is

the piezoelectricconstantmatrix which relatesstressto appliedelectricfield,and thatis

where the coupling electricaland mechanical featuresoriginate.

Substitutingequation (2.4) into equations (2.2) and (2.3),the linearconstitutive

relationsbecome

{a} = [Q]{e} -[e]T{E} (2.5)

and

{D} = [e]{e} + [w] T{E} (2.6)

Since the dielectric matrix [w] and the piezoelectric constant matrix [e] are sometimes

not available, the more commonly available constant matrix [d] and the free dielectric

matrix [e] are introduced, the relationship between those matrices are [73l

[e] = [d][Q] (2.7)

and

= + r

The constitutive equations of piezoelectric materials become

(2.8)

(2.9)

(2.10){D} = [d]{cr}+ [_]T{E}

I0



2.1.2 Constitutive Equations for Composite and Piezoelectric Laminae

For a thin laminated panel consisting of composite and piezoelectric layers (shown

in Figure 2.1), the two-dimensional constitutive equation in principle material axes for

an orthotopic piezoelectric layer can be obtained from equation (2.9) as [711

0"2 -- 2

Q66 _ 71_7"12

(2.11)

and the electrical displacement along the polling 3-axis, which is assumed to be the

normal direction of the plate, from equation (2.10), is

D3 = [d31 d32 0] 0"2 4" E3e33 (2.12)

T12

where Ea is the electric field; d31, d32 are the piezoelectric stress/charge constants; _33 is

the permittivity constant. For a composite lamina, the constitutive equation is

al [Qll Q12

0"2 = 2 Q22 e2

0 Q6s c
T12 ")'12

(2.13)

where [Q] is the reduced stiffness matrix, and the subscripts ¢ and c denote for piezo-

electric and composite laminae, respectively.
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Then the strain-stress relation for a general k-th layer with a lamination angle becomes

ez - E3k dy (2.14)

k 7z_ d_y k

where for composite layers,

[0]- [0]c
E3k = 0

and for piezoelectric layers,

o_k = [a_,a_,a_,k[O]_{,} + E3:33k

where [Q] is the transformed reduced stiffness matrix.

(2.15)

(2.16)
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2.1.3 Finite Element Equations

The generalized Hamilton's principle for a coupled electromechanical system can be

expressed as[74, 75]

where

is the kinetic energy;

j6It (T-Us+We-Wm+W)dt =0
1

1 I" O_ O_ d
T=  JP-5- v

V

(2.17)

(2.18)

1/Us -- "_ {_}T{o.}dV

v

is the strain energy of the system;

(2.19)

1/We = "_ {E}T{D}dV

V

(2.20)

is the electrical energy; Wm is the magnetic energy, which is negligible here; and

W:/wffbdV+/wffsdS+w-f¢-/¢qdS (2.21)

V Sl a2

is the work done due to external forces and the applied surface charge. In equations

(2.18) to (2.21), p is the density, u7 the displacement vector, -fib denotes the body force

vector, -fs the surface traction vector, ffc the concentrated forces, ¢ the electric potential,

and q the surface charge.

The linear swain-displacement relation is given as

}/ }_-x [ U_X W_x x

_y : Y_y -- Z W_yy

7xV { u, v +v,x 2w,xv

and the relation between electric field and electrical potentials is

(2.22)

{E_} = -[Sh]{¢} (2.23)

13



where [Bh] is a diagonal matrix

h! ... 0
[Bh]= :

-1

(2.24)

with hk is the thickness of k-th piezoelectric layer, u, v are the in-plane displacements,

w the transverse displacement, and n 4, is the number of piezoelectric layers.

Substituting equations (2.18) through (2.21) into equation (2.17), and using equations

(2.14) to (2.16) and (2.23) to (2.25), we have the equation of motion for the composite

plate with embedded piezoelectric layers in finite element form as

(2.25)

where {W} and {_} are the system structural node degrees-of-freedom and electric po-

tentials, {Fw} and { F¢_} are the load vectors due to acoustic excitations and piezoceramic

surface charge, and [M] and [K] are the system mass and stiffness matrices. The sub-

scripts w and ¢ denote structural and electric field components, respectively. The detail

derivation, element load vectors, and mass and stiffness matrices are given in Appendix A.

The equations of motion can then be rewritten as actuator equations as

[Mwl{17d} + [Kw]{W} = {rw} + {Fw_}
(2.26)

= -
and as sensor equations as

[K0]{¢} + [K0w]{W} = {F0} (2.27)

where { Fw4, } is the load on structure due to electric potential {_ }.

2.1.4 Finite Element Specifications

Many rectangular and triangular type finite elements are currently being used in

commercial and in-house codes. Any type of finite element can be applied to the present

formulation. The element selected for this study is a four-node rectangular C 1 conforming

element [76] and is shown in Figure 2.2. Each node of this element has four degrees of

14



freedom associated with the transverse displacements (w, w,x, w,y, w,zy) and two in-plane

displacements (u, v). The electric degrees of freedom are the electric potential ¢ of each

piezoelectric layer. The displacement shape functions and other characteristics of this

element are given in Appendix B.

Figure 2.2 C 1 conforming rectangular finite element

2.2 Boundary Element Method for Acoustics

2.2.1 General Aeroacoustics Equations

The general governing equations of inviscid flow are formed by one continuity

equation[77!

D _ Ofei

D'-7 + #_z'_zi = 0 (2.28)

three momentum equations

and an energy equation

Dfq Op

fi--_" + Ox--'_i= Pf i (2.29)

D____= c2 Dp (2.30)
Dt Dt

15



where c is the sound speed, _ is the density of the medium, fLi(xj,t), i,j = 1,2,3 are

the velocity components, p(xj, t) is the pressure, and fi are body forces.

The change of density and pressure due to acoustic wave is usually much smaller

than that due to fluid flow, so it is necessary to separate acoustic wave from the fluid

flow, denote subscript 'o' as the variable of fluid flow (i.e., _ = p + Po), the perturbation

decomposition gives the governing equations of acoustic wave in a homogeneous medium

with no mean flow as

Op Oui

b-/+po = 0
Oui Op

po-ff? + = o

Op c20p
Ot = o

i = 1,2,3 (2.31)

Eliminating the perturbation of density from above equations, we have the governing

02p

Ot 2
-- - c2V2p = 0 (2.32)

equation as

and the momentum equations give the relationship between acoustic pressure and velocity

components as

(2.33)
cop Oui

ox__+ P°-b-i-=0

and at a boundary, the normal derivative of pressure is obtained as

Op Ouini
q = O-'-ff= Po Ot (2.34)

where r_ is the unit outward normal vector.

Generally, it is more convenient to use a velocity potential to simplify the equations,

but here, since both pressure and velocity are needed in the formulation of control theory,

we use the pressure as the primary variable.

2.2.2 Dual Reciprocity Method

As one type of the boundary element method, the dual reciprocity method [69"701

offers the advantage that it does not need any domain integrals which appear when

.16



nonlinearproblemsor time dependentproblemsareconsidered(which does not mean

no domainequationsare needed).However, in this study, the main reasonfor using

the dual reciprocity methodinsteadof the generalboundaryelementmethodis that we

haveto transformthecoupledstructural--acousticequationsinto modalcoordinates.To

do so, somekind of uncoupledcoordinatesare required,and onecommonlyusedset of

coordinatesare the eigenvectors.Generally, the boundaryelementmethod combines

the frequency of the input excitation into its fundamentalsolution[481,making the

identificationof eigenvaluesand eigenvectorsextremelydifficulty.

General formulation For a general boundary value problem,

V2p(x,y,z,t) = b(x,y,z,t) in ft (2.35)

Assume that the right-hand term, b, can be expressed as a linear combination of a set of

independent functions, fi, defined in the domain f_ and on the boundary F. That is,

NN

b = E aifi (2.36)
i=1

where ai are initially unknown coefficients, and NN is the number of independent

functions. Defining a set of particular solutions,/5i, as

V2i5i = fi i = 1, 2,..., NN

Then equation (2.35) becomes

NN

=E ')
i=1

If we take the fundamental solution of the Laplace's equation

V2p*( + = o

that is

1
p*-- - R= 17- 1

q, = __Op*= 1 OR
0ff 4rR 2 0ff

(2.37)

(2.38)

(2.39)

(2.40)
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as the weighting function, then the weighted-residual method applied to equation (2.38)

requires
NN

fl i=1 fl

Using Green's formula, we obtain an integral equation as

f (V2p*)pdf_ + f (pq'-p*q)dF = Z ai (V2p*)_idf_

f_ F i=1

(2.41)

+ fr (_iq*- p*Oi)dr)

(2.42)

where F is the boundary of the domain.

Using equation (2.39), and considering the singularity of the fundamental solution at

the boundary, we obtain the integral equation for each point on the boundary as

cjpj + f_ (pq* - p*q)dr = _ _i cj_ij + (piq* - p*qi)dr (2.43)
d

r = F

where parameter cj is the ratio of the exterior area outside the domain of a sphere surface

with a small radius to the area of the entire sphere surface. For any interior point, we

have cj = 1 and

p.i=-/(pq*-p*q)dr+_-_eq(_i.i+ f (_iq*-p*_ii)dr) (2.44)
i=1 r

Equation (2.43) is the basis of the boundary element method. Since we seek a time-

dependent formulation, equations should be formed for nodes in the domain and on the

boundary, but as can be seen from equation (2.44), no domain integrations are required.

If the boundary is discretized into elements, and in each element, shape functions are

assumed so that the variables defined on the boundary can be expressed in terms of their

node values or

p = [N]{p} (2.45)

(2.46)

then the integral equation becomes

)]-- HjkPk -- Gikqk = _i -- Hjkpk -- Z Gikqk

k=l k=l i=1 k=l k=l
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where [N] is the shape functions, and N is the number of boundary elements. In matrix

form, we have

-[H]{P}- [G]{Q} = (-[H] [/5] -[G] [Q]){a} (2.47)

wherematrices[P]and[_]co°tain_,and_,as,heirco,umnsrespective,ymatrices
[HI and [G] are globe acoustic influence matrices assembled from the corresponding

element matrices which are defined as

[g]k = f P*[N]dF
l"k

[h]k = -cfi3k - f q*[Nldr
F_

(2.48)

Functions As expressed in equation (2.36), when function b satisfies certain continuous

conditions, there will be a set of functions and correspond coefficients such that

{b} = [F]{a} (2.49)

where each column of [F] consists of a vector which contains the value of the function

fi at the (NN) collocation points. Then if matrix IF] is invertible, we have

{c_} = [F]-l{b} (2.50)

Substitute the above equation into equation (2.47), and denote

[S]-:- (-[H] [P]- [G] [0])[F] -1 (2.51)

we obtain

-[H]{P} -[G]{Q} = [S]{b} (2.52)

Matrix [S] is a function of fi, 6, and/_i only, where the requirement on functions fi,

except some continuous requirements, is to allow that matrix [F] to be invertible. One

choice for those functions is to let [78, 79]

f,(÷)=I+R,, R,=I÷-÷_I (2.53)
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and for a three-dimensionalproblem,we have

R 3 2
_i = ___z,+ Ri

12 6

and

_ = o--_= + -fig

(2.54)

(2.55)

When these three sets of functions are obtained, matrices [H], [G] and [S] are known,

and with the function b, equation (2.52) can be solved with suitable boundary conditions

and initial conditions.

2.2.3 Boundary Element Method Equations

For a time-dependent acoustic problem, equation (2.32) is the governing equation,

comparing to equation (2.35), we set

so from equation (2.52), we have

1b= --__ (2.56)

where

[Ma]{/5} + [H]{P} + [G]{Q} = 0 (2.57)

[Ma]= _[s] (2.58)

2.2.4 Boundary Element Specifications

Similar to the finite element method, many types of boundary elements are available.

In this study, we selected one of the simplest two dimensional elements, the constant

rectangular element (shown in Figure 2.3), to demonstrate the capability of boundary

element method in solving acoustic problems.
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Figure 2.3 Two dimensional constant boundary element

2.3 Coupled Structure/Acoustic Equations

The boundary element equations of acoustic wave inside the cavity can be rewritten

here as

/ / ccb (Qc/+ =0
Mbc Mb J Pb + Hbc Hb Pb Gbc Gb Qb

where the pressure and its normal derivative are divided into two parts,

(P} = , {Q} =
P_ ( Qb

(2.59)

(2.60)

the subscript c denotes the quantities on the inner surface of the structure which will be

coupled with the finite element structure equation, and b at all the other locations. The

governing finite element equation of the structure, equation (2.26), is

IMwl{W}+EK_1(w)--(ro.)- (F,.)+{F_,} (2.61)

21



where the acousticload is separatedinto externalexcitation load and inside acoustic

load, {Fw} = {Fex}- {Fin}.

Thosetwo setof equationswill becoupledby usingthecompatibilityof displacement

and pressureon the inner surfaceof the plate.

2.3.1 Coupled Equation in Structure DOF

Because of the continuity of the displacement, the normal component of acoustic

velocity on the inner surface of the plate must be equal to that of the plate at the same

location, or

(2.62)

where the matrix [/3] transforms the acoustic velocity on the inner surface of the plate

{Uc} to its normal component {unc}, and matrix [T] is a transformation, which depends

on the primary variables and meshes of finite element and boundary element models. The

element matrices [/3e] and [Te] for constant boundary elements are derived in Appendix

C. Since equation (2.34) gives a relation between pressure and acceleration components,

we have

(2.63)

The second loading term on right side of equation (2.61) is due to the acoustic

pressure inside the cavity, its element node value can be related to the inside acoustic

pressure (see equation A.16) as

{fin} = [Tb]T / pc{Hw}dA (2.64)
q,g

A

Form this, we can obtain the relationship on a global level as

22



Substitutingequations(2.63) and (2.65) into equations(2.59) and (2.61), we have

the coupledequationfor a structuralmacousticsystemas

Mw 0 0 ] Cw 0 0
Mew Mc Mob Pc + 0 P,: +

0
LMbwMb_ M_ Pb P_

Hc Hob Pc =, -- acbQb +
Hb_ Hb

Pb - GbQb

(2.66)

or

[M]{_:} + [C]{_} + [K]{x} = {F1} + {F2} (2.67)

where {X} = [W,P_,Pb] T and

([Mcw],[Mb_])= ([C_],[Cbc])[Tl]

[Kwc]= [T21
(2.68)

Notice that the generalized mass matrix [M] and the generalized stiffness matrix [K]

are all no longer symmetric, and for generality, a damping term [Cw]{ 1_} is included

in equation (2.66). The force {F1} consists of external excitation to the structure and

normal derivative of pressure in the cavity, and { F2 } is the force acting on structure due

to applied electric potential.

2.3.2 Coupled Equations in Modal Coordinates

There are at least two different modal coordinate systems that can be used to transform

the governing equation in node DOF to truncated modal coordinates. One is taking the

natural modal shapes of the uncoupled system, defined by equation (2.59) and equation

(2.61). This allows the nodal DOF to be expressed as

}= = [_]{r/}
{x} = _" r/a

(2.69)

where t_w] is the modal matrix for plate equation, [_a] ([_a] = [_Pc, _b] T)\ is the

modal matrix for acoustic equation, and {r/w} and {r/a} are the modal variables of plate
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displacement and acoustic pressure, respectively. Another transformation is based on the

truncated natural modal shapes of the coupled equation (2.66), which gives

{X} = [kO]{q} (2.70)

where {r/} is the vector of modal variables, and [k0] is the modal matrix.

The first transformation will end with a set of coupled ordinary differential equations

because of the coupling between structure and acoustics even when no damping is

involved. Further, cases with all rigid acoustic boundary condition require some special

treatment for the rigid acoustic mode. Meanwhile, although more computing time is

needed to form coupled modes, the second transformation will give a set of independent

ordinary differential equations in the case without damping, and no judgement is needed

to select modes. Therefore, the second transformation, using coupled modes as modal

coordinates, is applied here.

Substitute equation (2.70) into equation (2.67), and pre-multiply by the transpose of

corresponding modal matrix, or

[M]*{/_} + [C]*{_} + [K]*{r/} = {L1} + {L2} (2.71)

where the modal matrices and modal vectors are

([MI*, [C]*, [K]*) = [qt]T([M], [C], [h'])[_]

({L1}, {L2}) = [_]T({F1}, {F2})

Equation (2.71) is the so-called time-domain modal formulation.

(2.72)
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CHAPTER 3

RESULTS FOR THE MODELING OF

COUPLED STRUCTURAL-ACOUSTIC SYSTEM

In this chapter we present the results based on the formulation previously developed

and also some additional discussion. The results are subdivided into three sections: acous-

tic results using the dual reciprocity boundary element method, the coupled structural-

acoustic response using the coupled boundary element and finite element method, and

results using the time-domain modal formulation. The purpose of this chapter is to show

that the dual reciprocity boundary element method is a powerful numerical technique that

can be used to solve a wide range of acoustic problems. The coupling of the boundary

element method and the finite element method, and its time-domain modal formulation,

lead to powerful tools that can be readily used to analyze structural-acoustic interaction

problems.

3.1 Interior Domain Analysis

In this section, three example problems are solved and results are compared with

exact solutions. Those problems are derived from a typical rectangular duct as shown in

Figure 3.1. The inlet is assumed to be at z = 20cm and the outlet at z = 0, while the

four duct side walls, with length of 20cm, are all assumed to be acoustically rigid in all

three examples, that is _nn = 0. The outlet has different boundary conditions.

The input acoustic wave, that is the acoustic field at the inlet, is assumed to be a

unit plane wave, thus the one-dimensional exact solution becomes valid [s°l . While for

the dual reciprocity boundary element approach, the inlet, outlet, and the four duct walls

are all discretized by constant two---dimensional boundary elements, and internal nodes

are uniformly distributed inside the duct. Two different models with different mesh are

employed for each problems. The first model (model-l) discretizes the inlet, outlet, or

each wall by a 5 x 5 mesh (or 150 boundary elements for the whole boundary) and

5 x 5 x 5 (or 125) internal nodes. The second model (mode-2) discretizes the inlet,

outlet, or each wall by a 7 x 7 mesh (or 294 boundary elements for the whole boundary)
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and also 5 x 5 x 5 (or 125) internal nodes. In the following example problems, the

pressure obtained at location x = y = z -- 10 cm is compared with the exact solution

at different input frequencies.

In the first example, a null pressure field is applied at the duct outlet, the results are

given in Figure 3.2. It can be seen that the boundary element method gives very accurate

results compared to the exact solution. However, at the acoustic natural frequency of the

duct, the boundary element results vary from the exact solution slightly. The source of

this discrepant is the coefficient matrix singularity at this frequency.

The second example problem uses the same duct and the same acoustic assumption,

but the outlet boundary condition is assumed to be a rigid wall. Once again, from

Figure 3.3, the boundary element method gives very accurate approximation, except at

the acoustic natural frequency.

In the third example problem, an impedance boundary condition is applied at the

outlet of the duct. A non-reflection condition, that is no reflection from the outlet, is

used here, which assumes the relationship between pressure and velocity at the outlet

to be v = poc based on the plane wave assumption. The density of air is taken as

Po = 1.21kg/m 3 and the speed of sound in air is given as c = 343m/sec. The results

are shown in Figure 3.4. Compared to the exact solution [48], observe that the boundary

element method results are quite accurate.

Generally, when the input frequency increases, the boundary element method results

tend to diverge from the exact solution. At high frequency, the higher acoustic modes

become significant while the current boundary element mesh may not be fine enough to

describe the higher acoustic modes. Thus, a finer mesh is needed to resolve the solution.
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3.2 Structural--Acoustic Interaction Response by Coupled FE/BE Method

Coupling the structural and acoustic domains is essential when trying to accurately

model harsh environments. As mentioned in Chapter I, the coupling between a flexible

plate and the acoustic cavity under harmonic acoustic inputs has been investigated by

many researchers using different approaches. The first objective of this section is to

validate the present coupled FE/BE method by comparing with known analytical and

experimental results for a system consisting of an isotropic plate and a cubic acoustic

cavity. Then this coupled FE/BE method is extended to other systems with composite

plates.

As shown in Figure 3.5, the coupled structural-acoustic system studied in this section

consists of a square plate and a cubic acoustic cavity with all other five walls acoustically

rigid. The plate is subjected to a uniformly distributed external pressure loading. Two

different plate models are considered.

The first coupled structural--acoustic system studied here consists of a cubic cavity

and a simply supported brass panel with the following plate and cavity characteristics:

Panel/Cavity Problem-Simply Supported Brass Plate

Cavity

X axis length L_ = 20 cm

Y axis length Ly = 20 cm

Z axis length Lz = 20 cm

Density of Air Po = 1.21 x 10 -3 g/era 3

Sound speed c = 34300 cm/sec.

Brass

Young's Modulus = 10.4 x 101° psi

Poisson's Ratio = 0.37

Density Pb = 8.5 g/cm 3
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Brass Plate

X axis length = 20 cm.

Y axis length = 20 cm.

Thickness = 0.09144 cm.

Two different mesh cases were used in modeling this coupled system. One case

(mesh-l) consisted of 25 (5x5 mesh) finite elements for the plate, 150 (5x5 mesh for

each of the six cavity walls) boundary elements for cavity, and 125 (5x5x5) internal

nodes; the second case (mesh-2) used 49 (7x7 mesh) finite elements for the plate, 294

(7x7 mesh for each of the six cavity walls) boundary elements, and 343 (7x7x7) internal

nodes. The pressure at the center of the cavity back wall ( at x = y = 10 cm, z = 0) is

considered as the output pressure (Pod,t) and the transmission loss (TL) is calculated using

the pressure on the exterior surface of the plate (at z = 20 cm) as the input pressure (Pin)

Pin (3.1)
TL = 10 lOgl0 \Pout/

The present FE/BE method results are shown in Figure 3.6 and exact solutions [171 and

experimental data [91 in Figure 3.7 [171. Note the FE/BE method results are of comparable

accuracy even for the first mesh case.

The second example considered analyzes the same plate/cavity system as the previous

one. The cavity is still cubic with all five walls being acoustically rigid; however, this

time the panel is made of composite materials. The cavity and composite plate used in

this example have the following properties:

Panel/Cavity Problem -- Simply Supported Composite Plate

Cavity

X axis length L_ = 8 in.

Y axis length L_ = 8 in.

Z axis length Lz = 8 in.

Density of Air po = 0.1138 x 10 -6 Ib/in. 3
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Soundspeed in./sec.c = 1.3504 x 104

Composite Plate

X axis length = 8 in.

Y axis length = 8 in.

Thickness = 0.036 in.

Graphite/Epoxy

Ell = 2.25 x 107 psi

E22 = 1.17 x 106 psi

v12 = 0.22

G12 = 0.66 x 106

p = 0.1458 x 10 -3

Three 6--layer composite plates of different stacking sequences are investigated. The

plate is simply supported. The transmission losses are plotted in Figures 3.8 to 3.10 versus

frequency. It can be seen that, in the three different stacking sequences, the fundamental

natural frequencies increase from uncoupled 115.3 Hz for (0/30/0)s plate, 114.9 Hz for

(O/60/O)s plate, 109.5 for (O/90/O)s plate (obtained by 7x7 mesh), to coupled 143.9 Hz,

143.9 Hz, and 139.7 Hz, respectively.

Boundary conditions are another factor affecting coupled natural frequencies. Figure

3.11 shows the transmission losses of the system with the same (0/90/0)s laminated plate,

but with different supported conditions. The 7x7 mesh is used. The coupled fundamental

natural frequency increases to around 240 Hz for the clamped case. Generally, the

transmission loss for the clamped case is larger than that of the simply supported case.
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3.3 Structural-Acoustic Interaction Response by Modal Formulation

The next objective is to form the model in modal coordinates for the coupled system

consisting of a 6-layer (0/90/0)s composite plate and a cubic acoustic cavity, and to

investigate the response of this coupled system under transient acoustic pressure. It is

essential for a mathematical model to accurately represent transient behavior if the model

is to be used as the basic equation for control. Even under harmonic inputs, there is a

transient period immediately following controller activation. Although the final response

of the coupled system will be harmonic under harmonic disturbance, the capability of the

coupled equations to model the response under transient load is necessary. Meanwhile,

to predict transient response itself is rather important for structural-acoustic interactions.

Although the coupled finite element and boundary element formulation developed

in Chapter 2 can be applied to transient problems directly, the current formulation is

not convenient because of the large number of equations, and it is very difficult, if not

impossible, to use this formulation in any control attempt. Hence, the coupled equations

have to be transformed into the modal formulation.

3.3.1 Coupled Natural Frequency and Mode Shape

To transform the coupled finite element and boundary element equations in terms

of physical coordinates into modal coordinates, a transformation matrix is required.

As mentioned in Chapter 2, we use the eigenvectors of the coupled system as the

transformation matrix. Generally, not all boundary element methods applied in acoustics

can be used to obtain the natural frequency and/or modal shape of the system, because

the frequency of the external load is embedded in the fundamental solution [481. But the

dual reciprocity boundary element method is one of those which can isolate eigenvalues

and eigenvectors. In fact, assuming the load term and damping term in equation (2.67)

are zero, we obtain an eigenvalue problem.

Table 3.1 gives a comparison of the natural frequency results for the coupled system

consisting of a cubic acoustic cavity with all five walls rigid and a simply supported brass
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plateobtainedfrom experiment[9],analyticalapproachll7],andpresentmethod.The table

indicates the coupled FE/BE method gives rather accurate results.

Table 3.1 Natural frequencies (Hz): Exact solution, Experiment data, and Present Results

Exact [ 171 Experiment [9] Present FEM/BEM

FE-25, BE- 125 FE-49, BE-294

Uncoupled

87.0 91.0 87.7 87.4 78.1

390.4 397.0 394.7 392.1 390.3

702.5 730.0 710.9 704.3 702.5

860.0 864.0 891.8 872.9 857.5

The convergence of the time-domain modal formulation, that is how many modes

should be retained in the analysis, was studied. Figure 3.12 shows the transmission loss

of the system consisting of a cubic acoustic cavity with all five wall rigid and a simply

supported brass plate under uniformly distributed external pressure. It indicates that the

lowest five modes are sufficient to give an accurate result. For the system with a 6-layer,

simply supported (0/90/0)s composite plate, the number of modes needed for accurate

results is also five as shown in Figure 3.13. The non-dimensional plate deflection and

transmitted acoustic pressure on the cavity back wall and one side wall (for example, x

= 8 in.) for the first mode are plotted in Figures 3.14 to 3.16 to show the coupling affect

on both the deflection mode of plate and the acoustic pressure mode of the cavity. We

thus will take five modes for all subsequent calculations using modal formulation.
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3.3.2 Time-Domain Modal Results

When modal coordinates, or modes, are selected, we are ready to predict the response

of the coupled structural-acoustic system. The time-domain modal formulation is actually

a set of ordinary differential equations (for transient problem). Since the number of

equations in the modal formulation is small (here it is five), a classical Runge-Kutta

numerical integration scheme can be easily employed.

What we study here is the coupled structural-acoustic system consisting of a 6-layer,

(0/90/0)s composite plate and a cubic cavity given in Section 3.2 under uniformly

distributed pressure on the external surface of the plate. The initial conditions in all three

examples are static. The first example problem is the response to an impulse, that is,

the forcing function is assumed to be

r(x,y,t) = 1.56(t) × 10 -3 (tb/i,_?) (3.2)

The time history of the displacement at the center of the plate, the transmitted acoustic

pressure at the center of the cavity back wall (x = y = 4 in. z = 0), and the forcing

function are shown in Figure 3.17. It can be seen that multiple modes are excited.

Multiple resonant excitation of this coupled structuralmacoustic system is studied

next. The forcing function is

f(x,y,t) = 1.5[sin(300rrt) + sin(1760rt)] x 10 -3 (lb/in. 2) (3.3)

and, hence, it excites the first and fourth system modes which have natural frequencies of

139.7 Hz and 879.0 Hz, respectively. This forcing function represents a periodiC: plane

wave with a sound pressure level of 126 dB. The time histories of the forcing function,

the displacement at the center of the plate, and the transmitted acoustic pressure at the

center of the cavity back wall are shown in Figure 3.18.

The last example of this chapter is the response under a forcing function defined as

f(x,y,t)= l.5 x

95t 0 < t < 0.01

0.95 0.01 < t < 0.03

0.95 - 55(t - 0.03) 0.03 < t < 0.04

0.4 t > 0.04

(lb/in. 2) (3.4)
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The forcing function, the displacementat the centerof the plate and the transmitted

acousticpressureat thecenterof thecavity backwall areshownin Figure 3.19. Those

examplesdemonstratedthecapabilityof handlingtime-dependentproblemsof thepresent
method.
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Figure 3.17 Displacement at the center of the plate and transmitted pressure at the

center of the cavity back wall: Forcing function (bottom) equation (3.2)
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Figure 3.18 Displacementat thecenterof theplate andtransmittedpressureat the
centerof the cavity backwall: Forcingfunction (bottom)equation(3.3)
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Figure 3.19 Displacement at the center of the plate and transmitted pressure at the

center of the cavity back wall: Forcing function (bottom) equation (3.4)
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3.4 Conclusions

The numerical examples given in this chapter show that the dual reciprocity boundary

element method, the coupled boundary element-finite element method and its time-domain

formulation, developed in Chapter 2, can be used to solve acoustic or coupled structural-

acoustic problems accurately and efficiently. Although we did not give any example

with complex geometry, based on the versatility of the boundary element method and

the finite element method, and the general approach employed in this chapter for the

structural-acoustic coupling, we can expect that it is not difficult to extend this method

to problems of complex geometry. In fact, the example problems investigated in this

chapter show little difficulty in applying this method to different plates, different plate

boundary conditions, and different acoustic boundary conditions.
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Chapter 4

CONTROL OF INTERIOR ACOUSTIC PRESSURE LEVEL

The second step of this investigation is to control the interior acoustic pressure level

based on the governing equations in the time-domain derived in Chapter 2. The control

force is applied through the piezoelectric patches bonded on the two surfaces of the plate.

The governing equations in time-domain are first rewritten in state space form. Then

a feedback controller, the linear quadratic regulator, and a feedforward controller based on

the concept of least mean square (LMS) are employed to reduce the acoustic pressure field

inside the cavity via transmission through the flexible plate using piezoelectric patches

as actuators.

4.1 State Space Formulation

The time-domain modal formulation is rewritten here as

[M]*{/_} + [C]*{,}} + [K]*{q} = {L1} + {L2} (4.1)

where {L1 } is due to external acoustic pressure and { L2 } is due to piezoelectric actuators.

If we denote the system response due to external pressure as {r/e } and that due to actuators

as {r/,_ }, then we have

and

[M]*{/)e} + [C]*{r}_} + [Kl*{rle} = {L,}

[M]*{,_} + [C]*{,}_} + [K]*{rl_} = {L2}

Define

{7} = +

Xo= x =

Then we have the state space form of the governing equations (4.3) as

(4.2)

(4.3)

(4.4)

(4.5)

= Ax + Bu (4.6)

53



whereu = {E3}/E3max is the control variable vector, E3maz is the maximum allowable

operating electric field of the piezoelectric material,

A I (° /0 /_Ic , ,B = (4.7)
-M*-IK * -M M.-1G

and [G] is the control inference matrix which is obtained from

{L2} = [G]u (4.8)

4.2 Linear Optimal Controller

The linear quadratic regulator is considered in this section to reduce the acoustic

pressure level inside the cavity. The objective here is to minimize the global acoustic

pressure using the piezoelectric patches bonded on the two surfaces of the plate. The

control mathematical models based on the time-domain state space formulation are

presented first, then numerical results are obtained.

4.2.1 Mathematical model

Define the linear quadratic performance index for optimal control as [Sll

OO

J=2 f [(x+Xo)TQ(x+XO)+uTRu]dt (4.9)

0

where Q is a real symmetric positive semi-definite matrix and R is a real symmetric

positive definite matrix. Then the optimal control for this linear quadratic problem can

be obtained as a function of the costate [811, and if we assume the relation between the

costate and the state variable is linear, we have the control effort as

u = -R-XBTp(x +Xo) (4.10)

while the Riccati matrix P, which is symmetric and positive definite, can be obtained

from the Riccati equation [821

ATp + PA - PBR-1BTp = -Q (4.11)
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Consider a maximum electric field that can be applied to the piezoelectric material,

where the constraint for equation (4.1 1) is

lull < 1, i = 1,2, ..., Np (4.12)

and Np is the number of piezoelectric actuators. Then equations (4.9), (4.10), and (4.1 1)

form a bounded optimization problem.

Since our objective is to control the inside acoustic pressure level, we define

the weighting matrix Q so that the (x + xo)TQ(x + xo) term in the linear quadratic

performance index represents the acoustic potential energy in the cavity

12 / _oc 2dVp2= 21c_.{r/}r[_f]T[_.]{r/} (4.13)

V

where [_n] is the modal shape matrix evaluated inside the cavity, it relates to the NN

interior points in the cavity and can be obtained from the coupled modal matrix [_] in

equation (2.70). Then we have

[Q]= [Qo x Q22° ] (4.14)

where
1

Qxl - 2_c2-[*n]T[_0n] (4.15)

Q22 = 0

4.2.2 Numerical Results

Based on the above mathematical model, several example problems are solved. The

coupled structural-acoustic system is the cubic cavity backed by a simply supported

6--layer (0/90/0)s composite plate given in Section 3.2. The results are presented as

follows.

Piezoelectric Layers

Before the discussion of control results, the coupled structural-acoustic system is

modified by bonding a piezoelectric layer on each of the external and internal surfaces

completely of the composite plate. The piezoelectric material is considered as isotropic.

The characteristics of the piezoceramic layer are: [711
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Piezoelectric Layer (PZT)

Modulus of Elasticity Ep = 0.9 x 107 psi

Poisson's Ratio 7p = 0.3

Density pp = 0.7101 × 10 -3 Ib/in. 3

Stress�Charge Constant d31 = d32 = -7.51 × 10 -9 in./v

Max. Electric Field E3rnax = 1.52 × 104 v/in.

The thickness of the piezoelectric layer is assumed to be the same as the composite

layer; that is, 0.006 inch. Following the same procedure given in Chapter 3, the

responses of the full coupled acoustic/composite/piezoelectric system under harmonic

acoustic pressure with different frequency content are obtained. The transmission loss at

the center of the cavity back wall is compared with that of the system without piezoelectric

layers in Figure 4.1. The natural frequencies of the systems with or without piezoelectric

layers are tabulated in Table 4.1. Two conclusions can be obtained from this result: 1) the

mass and stiffness of the piezoceramic layers have to be considered, the responses of the

structural-acoustic systems with and without the piezoceramic layers are rather different,

the natural frequencies of the system are changed, the fundamental frequency decreases

10Hz and the second increases because of the isotropic property of the piezoelectric

layers; and 2) five modes are sufficient for the time-domain modal formulation to obtain

accurate results for input frequency up to 1000 Hz.

Table 4.1 Natural frequencies (Hz) of the system with and without piezoelectric layers

mode 1 mode 2 mode 3 mode 4 mode 5

With PZT Layers 129.6 574.7 685.0 867.9 1060.1
i

Without PZT Layers 139.7 509.8 783.5 878.6 985.4

Resonant Excitation

The forcing function for this example is assumed to be

f(x,y,t) = 3.0 sin (2807rt) x 10 -3 (lb/in2.) (4.16)
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which correspondsto the frequencyof 140 Hz and, hence,the fundamentalnatural

frequencyof the coupledstructural-acousticsystemwith piezocermaticlayers which is

129.6Hz is excited. Considerthe reflection,equation(4.16)modelsa periodic exterior

plane wave with a maximum pressurelevel of 120 dB. The initial condition of the

systemis assumedto be at rest. The weightingmatrix R is takento be diagonal,and

each diagonalelementis equal to 10-4.

Table4.2 Modal coefficientsfor controlledanduncontrolledsystemfor resonant
excitation

mode1 mode2 mode3 mode4 mode5

uncontrolled 1.77E-01 1.27E-04 1.87E-04 -6.34E-04 -2.34E-05

controlled 3.91E-03 4.56E-04 5.29E-04 -5.11E-04 -8.56E-05

Control is implementedvia piezoelectricpatchescovering the two surfacesof the

compositeplate. The time historiesof the displacementat the centerof the plate, the

pressureat the centerof the cavity backwall, the normof the pressurefield inside the

cavity andthecontrol effort aregivenin Figure4.2. The amplitudeof the

acousticpressureat thecenterof thecavitybackwall decreasesfrom 7.22x 10 -3 lb/in. 2

to 1.37 x 10 -4 lb/in. 2 after the controller is turned on, that means a 34.4 dB increase in

the transmission loss. At the same time, the amplitude of the maximum deflection of the

plate reduced from 7.93 x 10 -4 in. to 1.14 x 10-s in. It can be seen form Figure 4.2,

the acoustic pressure and the displacement of the plate are all reduced when the control

force is applied. Figures 4.3 and 4.4 give the comparison of the maximum acoustic

pressure inside the cavity and the maximum plate displacement between the controlled

and uncontrolled system at the instant of maximum acoustic pressure at the center of

the cavity back wall. It can be seen that, for the uncontrolled system, the response

is dominated by the first coupled mode. After the controller is turned on, multi-mode

behavior appears. Table 4.2 gives the values of the modal variables corresponding to

maximum acoustic pressure at the center of the cavity back wall for the controlled and
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uncontrolledsystems,thoseresultsindicatethedominatedfundamentalmodeis reduced

with active control.

Multi-Resonant Excitation

The forcing function for this example is

f(z,y,t) = 3.0[sin (2804"t) + sin (1760rt)] x 10 -3 (lb/in. 2) (4.17)

Hence, the fundamental and the fourth coupled natural frequency, the later corresponds

to the uncoupled cavity frequency at 867.9 Hz, are excited. This function models a

periodic plane wave of maximum pressure level around 126 dB. The initial condition of

the coupled system is at rest.

Table 4.3 Modal coefficients for controlled and uncontrolled system for multi-resonant

excitation

mode 1 mode 2 mode 3 mode 4 mode 5

uncontrolled 1.78E-01 3.68E-04 5.48E-04 -4.43E-02 -6.48E-05

controlled 4.01E-03 6.15E-04 9.10E-04 -2.82E-03 -4.61E-05

The same cost function as in the resonant excitation case is applied in this example.

The time histories of the displacement at the center of the plate, the pressure at the center

of the cavity back wall, the norm of the pressure field inside the cavity, and the control

effort are given in Figure 4.5. Notice that the pressure and displacement are both reduced

dramatically after the controller is turned on. The amplitude of the acoustic pressure at the

center of the cavity back wall decreases from 9.56 x 10 -3 Ib/in. 2 to 2.33 x 10 -4 lb/in. 2

after the controller was turned on, that means a 32.3 dB increase in the transmission loss,

and the amplitude of the maximum deflection of the plate reduced from 8.05 x 10 -4 in.

to 1.50 x 10 -5 in. Figures 4.6 and 4.7 give the comparison of acoustic pressure inside

the cavity and plate displacement of the controlled and uncontrolled system at the instant

of maximum acoustic pressure at the center of the cavity back wall. Table 4.3 tabulates

the modal coefficients corresponding to maximum acoustic pressure at the center of the

cavity back wall for the controlled and uncontrolled systems. It can be seen that the

fundamental and fourth modes are the dominate and both are reduced.
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Off-Resonant Excitation

In this example, the forcing function was taken to be

f(x,y,t) = 3.0 sin (5OOTrt) × 10 -3 (Ib/in. 2) (4.18)

with a frequency of 250 Hz which is between the natural frequencies of the first (129.6

Hz) and the second (574.7 Hz) system modes. As noted before, this models a periodic

plane wave of maximum pressure level around 120 dB. The initial condition of the

system is again at rest.

The same quadratic cost as before is applied in this example. The time histories of the

displacement at the center of the plate, the pressure at the center of the cavity back wall,

the norm of the pressure field inside the cavity, and the control effort are given in Figure

4.8. Figures 4.9 and 4.10 give the comparison of acoustic pressure inside the cavity and

the plate displacement of the controlled and uncontrolled system. The amplitude of the

acoustic pressure at the center of the cavity bottom decreases from 6.49 x 10 -4 Ib/in. 2

to 1.40 x 10 -4 Ib/in. 2 after the controller was turned on, that means a 13.3 dB increase in

the transmission loss, and the amplitude of the maximum deflection of the plate reduced

from 6.49 x 10 -s in. to 1.92 x 10 -_ in. Notice that the reduction of acoustic pressure

and the plate deflection in this off-resonant excitation example is much smaller than

in the resonant or multi-resonant examples, this phenomena is reasonable because, the

pressure or deflection of the off-resonant case themselves are much small comparing to

resonant or multi-resonant cases. This can be observed by comparing Table 4.4 with

Tables 4.2 and 4.3.

Table 4.4 Modal coefficients for controlled and uncontrolled system for off-resonant

excitation

mode 1 mode 2 mode 3 mode 4 mode 5

uncontrolled 1.52E-02 1.54E-04 2.02E-04 -9.13E-04 -2.36E-05

controlled 3.46E-03 4.01E-04 4.40E-04 -7.86E-04 -5.89E-05
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Effect of Weighting Matrix Q

Weighting matrix Q determines the linear quadratic response term in the cost function.

Consequently, different definitions of Q will give different performance. Here we defined

another weighting matrix to compare the performance with the cavity acoustic potential

energy given in equation (4.15). The elements in equation (4.14) are defined here as

Qn = [K]*

Q22= [M]*
(4.19)

The results of the system response under external excitations given in equations

(4.16) to (4.18) are obtained using the same R matrix as before. The time histories of

the displacement at the center of the plate, the pressure at the center of the cavity back

wall, the norm of the pressure field inside the cavity, and the control effort are given in

Figures 4.11 to 4.13 for the three loads, respectively. Table 4.5 compares the increase

of sound transmission loss at the center of the cavity back wall and the displacement

reduction at the center of the plate for those two Q matrices. The displacement reduction

is defined as the ratio of the controlled and the uncontrolled displacement amplitudes. It

can be seen that the performance from the two different cost functions are comparable

to each other.

Table 4.5 The increase of sound transmission loss (ITL) at the center of the cavity

back wall and the displacement reduction (DR) at the center of the plate: comparison

of different weighting matrices Q

Q matrix in Eq. (4.15) Q matrix in Eq. (4.19)

ITL (dB) DR (%) ITL (dB) DR (%)

Resonant 34.4

Multi-Resonant 32.3

Off-Resonant 13.3

1.44 27.8 4.04

1.86 29.2 4.35

29.4 12.4 29.3
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and the control effort: Multi-Resonant excitation
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Figure 4.6 Uncontrolled pressure field and plate deflection: Multi-Resonant excitation
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and the control effort: Off-Resonant excitation
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Figure 4.11 Time history of the pressure at the center of the cavity back wall,

the displacement at the center of the plate, the norm of the cavity pressure field,

and the control effort: Resonant excitation and Q matrix in equation (4.19)
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Figure 4.12 Time history of the pressure at the center of the cavity back wall,

the displacement at the center of the plate, the norm of the cavity pressure field,

and the control effort: Multi-Resonant excitation and Q matrix in equation (4.19)
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Figure 4.13 Time history of the pressure at the center of the cavity back wall,

the displacement at the center of the plate, the norm of the cavity pressure field,

and the control effort: Off-Resonant excitation and Q matrix in equation (4.19)
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4.2.3 Optimal Location of the Piezoelectric Patch

We are now trying to investigate the best location of the piezoelectric patch. In

this study, we will utilize the finite element method to determine the locations where

piezoelectric patches can most affect the inside acoustic pressure. To assess the effect

of the different patch locations, a norm of the feedback control gain (NFCG) is defined.

The feedback control gain matrix can be determined from equation (4.10) as[71]

[Ga] = [R]-I[B]T[P] (4.20)

the norm of the feedback control gain is defined from the norm of matrix [G,,] as

I_

NFCG = Z (ga)i_ (4.21)

i=1 Lj=l

where Np is the number of piezoelectric actuators, and 2m is the total number of state

variables in equation (4.6).

Assuming that we use a pair of piezoelectric patches (Np = 2) having the same shape

and area of a finite element and bonded to the two surfaces of the composite plate. The

NFCGs for the piezoelectric patches covering each element alone are calculated. The

same weighting matrices Q and R as previously defined are used. After normalization

with the maximum norm to be unity, they are plotted in Figure 4.14. Only 16 elements

are marked and the others can be obtained by symmetry. It can be seen that placing the

actuators at the center of the plate will give the best performance.

The results of using a pair of actuators at the center of the plate for the three extemai

loads are given in Figures 4.15 to 4.17, respectively, and, as shown in Table 4.6, they are

compared with the previous results in the sense of using the same weighting matrices.

Notice that the optimally located actuators uses only 2% of the piezoelectric material

as the earlier analysis and computations with piezoelectric layers covered the complete

surfaces.
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Table 4.6 The increase of sound transmission loss (ITL) at the center of the cavity

back wall and the displacement reduction (DR) at the center of the plate:

Comparison of the performance of optimal located actuators and previous ones.

Actuators cover two Actuators cover two

surfaces of plate surfaces of center element

ITL (dB) DR (%) ITL (dB) DR (%)

Resonant 34.4

Multi-Resonant 32.3

Off-Resonant 13.3

1.44 18.1 13.3

1.86 23.1 13.9

29.4 8.70 40.0

0.09 0.18 0.06 0.31

0.23 0.26 0.13 0.40

0.23 0.23 0.21 0.61

0.53 0.55 0.41 1.00

Figure 4.14 NFCGs for different locations of piezoelectric actuator.

75



0.03

<_ 0.02

0.01

o
_ -0.01

a. -0.02

X 10 -3

0

0.05 0.1 0.15 0.2

Time (sec.)

1.2

A

<_ 1
(-

_o.8

"- 0.6

0.4

0_
-- 0.2

0
0

x 10 -s

0.05 0.1 0.15 0.2

Time (sec.)

1

0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

Time (sec.) Time (sec.)

Figure 4.15 Time history of the pressure at the center of the cavity back wall,

the displacement at the center of the plate, the norm of the cavity pressure field,

and the control effort: Resonant excitation and best location
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Figure 4.16 Time history of the pressure at the center of the cavity back wall,

the displacement at the center of the plate, the norm of the cavity pressure field,

and the control effort: Multi-Resonant excitation and best location
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and the control effort: Off-Resonant excitation and best location
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4.3 Feedforward Controller

In linear quadratic regulator, the control gain is sought to give the best trade-off

between performance level and cost of control. However, this controller requires full

state feedback which in reality is hard to achieve [831. In this section, a more practical

controller design, feedforward control [58l, is investigated.

Assume the external acoustic wave is measurable, we try neutralize the external

disturbance by applying a control force (from piezoelectric actuators) in the weighted

least-mean-square sense which counteracts the external pressure disturbance.

4.3.1 Mathematical Model

Assume that the external wave is a plane wave, and the measured pressure on the

plate can be expressed as a Fourier series

NL

P(x,y,t) = E Pksinwkt (4.22)
k=l

where Pk are known coefficients, and wk are the input frequencies. Then the load term

in equation (4.2) can be expressed as

NL

{L1} = {L1} E Pksinw_t (4.23)
k=l

where {L1 } is the modal force corresponding to uniformly distributed unit pressure.

To suppress the acoustic field inside the cavity, we assume that the control force

has the form of

NL

{L2} = [G]{/3} E Pksinwkt (4.24)
k=l

where [G] is the modal force matrix corresponding to the maximum operating electrical

field as defined in equation (4.8). Each column of [G] corresponds to each actuator.

Further, {/3} is the undetermined coefficient vector.

After substituting equation (4.23) and (4.24) into equation (4.1), we have

NL

y' Pksin kt (4.25)
k=l
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If we ignore the damping term when we determine the control effort, and notice that

matrices [M]* and [K]* are all diagonal, we have

NL NL

{7/} = E {a}ksinwkt = E[O]k({ L1} +[G]{fl})sinwkt
k=l k=l

where matrix [O]k is also diagonal and

(4.26)

Pk
(ok)/i- kTi_ k iiw2m. (4.27)

To reduce the acoustic pressure level, we desire the inside acoustic pressure caused

by external acoustic waves at each frequency to be null, that is

[_]{C_}ksinwkt = {0}, k= 1,2,...,NL (4.28)

Generally, the number of the actuators is not the same as the number of frequencies in

the exciting wave, and there is no proportional relation between {L1 } and [G]. Thus,

equation (4.28) is impossible to achieve. Instead, {fl} will be designed to reduce the

internal pressure waves as much as possible in the least mean square sense, or

NL NL

H = ]_ II[_nl{_}kll 2= _ + [a]{_}) i
k=l k=l

---+min. (4.29)

The resulting {/3} is

NL

E [v]r[o][[_.]r[_.][o]k
t/3} = k=l {Zl } (4.30)NL

E [Glr[Olrk[ealT[eal[Olk[a]
k=l

4.3.2 Numerical Results

The example problems in Section 4.2 using three different excitation forces investi-

gated are studied again here using the feedforward controller. As in the LQR, only one

pair of actuators covering the external and internal surfaces of the composite plate are

used. The results are presented as follows.
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Resonant Excitation

The comparison of the controlled and uncontrolled responses is given in Figures

4.18 and 4.19. The feedforward controller reduced the maximum pressure at the center

of the cavity back wall from the uncontrolled 7.22 x 10 -3 Ib/in. 2 to controlled

5.69 x 10 -5 lb/in. 2 This is a 42. I dB increase in the transmission loss. At the same time,

the amplitude of the maximum deflection of the plate is reduced from 7.93 x 10 -4 in.

to 2.05 x 10-5 in. Higher performance has been achieved here relative to the LQR case.

Multi-Resonant Excitation

The results are compared in Figures 4.20 and 4.21. The feedforward controller

reduced the maximum pressure at the center of the cavity back wall from the uncontrolled

9.56 x 10 -3 lb/in. 2 to controlled 2.62 x 10 -3 lb/in. 2 This is a 11.2 dB increase in the

transmission loss. The amplitude of the maximum deflection of the plate is reduced from

8.05x 10 -4 in. to 1.23x 10 -4 in.

Off-Resonant

The results are given in Figures 4.22 and 4.23. The feedforward controller reduced

the maximum pressure at the center of the cavity back wall from the uncontrolled

6.49 x 10 -4 Ib/in. 2 to controlled 1.17 x 10 -4 lb/in. 2 This is a 14.9 dB increase in

the transmission loss. At the same time, the amplitude of the plate deflection is reduced

from 6.51 x 10 -5 in. to 3.34 x 10 -5 in.
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to resonant excitation: Time history of the pressure at the center of the cavity back
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4.3.3 Optimal Location of the Piezoelectric Patch

Once again, we try to find the optimal location of the piezoelectric patches. As we

mentioned in Section 4.2, the mass and stiffness of the piezoceramic patches will affect

the characteristics of the coupled system. Thus, the different location and shape of the

piezoelectric actuators will mathematically change the system and the response. So in

this study, we only try to investigate the optimal location when the external excitation is

a simple harmonic plane wave at frequency of 140 Hz. And similar to Section 4.2, we

try only one pair of piezoelectric patches bonded to the two surfaces of the plate, and

each patch occupies only one finite element.

The criteria of the performance in this section is defined as the increase of the

transmission loss for the norm of the inside acoustic pressure field between controlled

and uncontrolled systems. The results are given in Figure 4.24 after normalization with

the maximum value. Notice the best location of the piezoceramtic actuator is at the center

of the plate again. The time histories of the displacement at the center of the plate, the

pressure at the center of the cavity back wall, the norm of the pressure field inside the

cavity, and the control effort when the actuator is at the best location are given in Figures

4.25. The comparison of the increase of sound transmission loss at the center of the

cavity back wall and displacement reduction at the center of the plate between actuators

at the best location and actuators covering two surfaces of the plate are given in Table 4.7.

Table 4.7 The increase of sound transmission loss (ITL) at the center of the cavity back

wall and the displacement reduction (DR) at the center of the plate: Comparison of the

performance of optimal located actuators and the one covering two surface of the plate.

Actuators cover two surfaces of plate Actuators cover center element

ITL (dB) DR (%) ITL (dB) DR (%)

42.1 2.59 33.8 5.37
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0.46 0.06 0.56 0.45

0.05 0.15 0.55 0.84

0.57 0.24 0.12 0.89

0.2C 0.2C 0.46 1.00

Figure 4.24 The normalized increase of transmission loss obtained from different location

of piezoelectric actuators.

89



6 x 10-4 _ 0.03 -

!!NI I 
_-_tilPTIlltYIItliltlllllliI11 __o.o,
"'-_[_,r_,r[[t'_ll,",,,,-','1 " -°°_I "vVVVIVVIVw'

0 03'
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15

Time (sec.) Time (sec.)

x 10 -4 x 10 -3
2 4

® 0

i:5

-2
0 0.05 0.15 0.2 0

0.2

2

_-2

-4
0.1

Time (sec.)

0.05 0.1 0.15 0.2

Time (sec.)

Figure 4.25 Comparison of controlled (left) and uncontrolled (right) system responses

to resonant excitation: Time history of the pressure at the center of the cavity back

and displacement at the center of the plate: Best location
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4.4 Conclusions

The linear quadratic regulator and a feedforward controller based on the concept of

least mean square are applied with the intent to reduce the acoustic pressure field inside

the cavity for the coupled plate/cavity system under different external disturbances. The

piezoelectric patches bonded on the plate surfaces are used as the actuators, and the

total acoustic potential energy inside the cavity is used as the control objective. The

pressure level inside the cavity and the plate deflection are reduced successfully for both

controllers. The optimal location of the piezoelectric actuators are investigated based on

those two controllers.
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Chapter 5

Summary and Conclusions

5.1 Concluding Remarks

The contributions of this dissertation consists of two parts, one is the modeling of

the acoustic-structure interaction using the coupled finite element and boundary element

methods, the other is the suppression of interior acoustic pressure levels transmitted

through composite plates using bonded piezoelectric actuators.

To predict the response of the coupled structural-acoustic system under external

acoustic excitation, the C 1 conforming finite element method is used to model the plate,

and the dual reciprocity boundary element method is used to model the interior acoustic

domain. Based on the continuity requirement on the interior surface of the plate, the

boundary element method and finite element method are coupled together to form a

powerful tool which can be used to solve structural-acoustic interaction problems. Interior

acoustic problems are analyzed first using only the boundary element method, serving to

verify that the boundary element method is an accurate and versatile approach in solving

acoustic problems. The coupled method is then applied to a cubic acoustic cavity backed

by a brass plate, the results are compared with the analytical solution and experiment

data, and the accuracy of the coupled method is verified. This method is then applied to

the cavity backed by a composite plate.

Taking advantage of the dual reciprocity boundary element method, the coupled finite

element and boundary element scheme is used to calculate the eigenvalues and eigen-

vectors of the coupled structural-acoustic system. Those eigenvalues are the natural

frequencies of the coupled system. The eigenvectors are employed to form the transfor-

mation matrix to transform the coupled equations into modal formulation which has a

very small number of equations compared to the original one. The responses of the cou-

pled acoustic-structure system under various external excitations are investigated using

the modal formulation to demonstrate its accuracy and capability.
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The resultsshowthat it is necessaryto consider the interaction between the acoustic

domain and the structure, and also to consider the mass and stiffness of the piezoelectric

patches. The interaction between structure and acoustic cavity significantly influences

the overall system natural frequencies, and the full coupling between composite laminate

and piezoelectric patches also modifies the natural frequencies of the system.

Based on the modal formulation, two different control designs are applied to reduce

the transmitted acoustic pressure inside the cavity with embedded piezoelectric patches

as actuators. The linear quadratic regulator gives the best control performance under

certain information of the system and external load. The feedforward controller is based

on the attempt to neutralize the external excitation in the weighted least mean square

sense. For the two controllers, they both can reduce the acoustic pressure field inside

the cavity and the deflection of the plate effectively. The higher the transmitted pressure

is, the better the control performs. Specifically, for the resonant excitation, the LQR

can increases the transmission loss up to 34.4 dB, and feedforward, up to 42.1 dB, at

the same time, the maximum deflection of the plate is reduced 98.6% using LQR, and

97.4% for feedforward controller.

The optimal locations of the piezoelectric actuators are investigated for those two

controllers. Comparison to the case where piezoelectric patches cover the entire external

and internal surfaces of the plate, the optimal located piezoelectric actuators perform

rather efficiently.

Currently, industry is striving to reduce the interior noise in aerospace and automobile

systems. These goals require more efficient approaches to model the interaction between

acoustic and structures, and also the design of suitable controllers. This study is only an

attempt to enhance our understanding in that direction.

5.2 Future Work

Many areas of research still need to be considered in order to more accurately

model the real world systems. Present finite element/boundary element model could

be improved in at least three areas. First, the nonlinear large displacement-strain relation
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of the compositelaminateneedsto be includedwhenexternalacousticpressureis high

or the exciting frequencyis aroundthenaturalfrequenciesof thesystem.For aerospace

engineering,theacousticpressurelevel for newsupersonicaircraftwill beof 190dB, the

thin compositeplate will thenbe into largedeflectionrange. Second,the thermaleffect

on compositematerialand piezoelectricmaterialshouldbe considered.For supersonic

aircraft, the surfacetemperatureof thefuselagewill easily reachfew hundredsdegree.

Third, otherelements,suchaslinearor otherhigherorderboundaryelements,or three

dimensionalelements,like shell elements,shouldbe includedto model real systemas

aircraft fuselageor automobilebodies.

For control, other controllersshould be considered. In this study, piezoelectric

patchesareusedonly asactuators,theuseof piezoelectricpatchesassensorandactuator

becomesnaturally the next step.
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APPENDIX A

Derivation of Finite Element Equation

The finite element equation of motion for the laminated composite plate with piezoce-

ramic layers can be obtained from the generalized Harmilton's principle. When the plate

is discretized by certain type of elements, this principle is valid for each element. Con-

sidering a certain element, substituting equations (2.18) to (2.21) into equation (2.17),

we have

f [p,5(_ + {,SE} T {D} - {Be} T{a} + 8_fb]dV+

v. (A.1)

f _LdS + f _d_dS- f 6¢qdS+ _L=O
Sel ..qe2 $e3

where Ve is the volume of the element, Sel is the element boundary with prescribed

forces, se2 is the element boundary with given displacement, and se3 is the surface of

piezoelectric material. For thin composite panel, equation (A. 1) becomes

h/2

f f [p,_+ {,SE} T{D}- {&}T{a}]dZdz+ f,5_fdA- f ,5¢qdS=O (A.2)

-h/2 A_ Ae A_z

where h is the plate thickness and ff is the external loading on the plate surface Ae.

The displacement vector in the element can be expressed as the displacements at

element nodes as (see Appendix B)

/i// /_7- - [H,l{b} = /[H=l[Tml{wm}

[H_l{b} I.[H,l[T.dIw._}

and the strain--displacement relation in equation (2.22) yields the strain vector as

(A.3)

{e} = [Cml{b} + ziCb]{ a}
(A.4)

then the constitutive equation (2.14) gives the stress vector for k-th layer as

{a}k = [(_] k([C,n]{b} + z[Cb]{a} -- [d-] {E3})
(A.5)
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where
[Gk_,k "" d_k_jk ]

Ldxyk6ik "'" dxyk6jk J

(A.6)

and {E3} = E3)nl, (E3)n2,..., (E3)nn_b , we assume the layers nl, n2, ..., nn¢ are

the location of piezoceramic.

Substitute equations (A.4) to (A.6) into equation (A.2), we have the governing

equation in element level as[71]

l{[00 00Jmm ff)m q- kmb km km_ tbm = fm0 Lkc,b k_m k¢,
0 tb_ f_

where the element matrices are defined as

[rob] = (p,h¢ + p_h_)[Tb] T i {H_°}{Hw}TdA[Tb]

A,

[ram] = (p_h 0 + pchc)[Tm] r f [gu, gv][Uu,Hv]TdA[Tm]

A,

[kb] = [Tb]T f [Cb] T ([D] c + [D]¢)[CbldZ[Tb]

A,

[kin] = [Tin] T i [Cm]T ([A]c + [A]g_)[Cm]dA[Tm]

A,

[kmb] = [kbm] T = [Tin] T S [C'_]T ([B]c + [B]_,)[CbldA[Tb]
A,

[k,,] = [BhIT[G_,]T f [CbldA[Tb]
A,

[k,m] = [Bh]T[F,] T S [Cm]dA[Tm]

A¢

[k+] = --hpAe,33[Bh]T[Bh]

{fb} = [Tb]T SPz[Hw] TdA

A,

(A.7)

(A.8)

(A.9)

(A.IO)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)
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i ( ÷'"E 10'a  A,7)
A_

f¢ } = i qdA (A.18){
_r

A_

where
h/2

([F¢],[G_]) = / [Q]k[4k(l,z)dz (A.19)

-h/2

where [Bh] has been defined in equation (2.24).

It is noticed that, in the element mass matrices (A.8 and A.9) and stiffness matrices

(A.IO and A.11), the modification of piezoceramic layers is included, p_ and pc are the

mass density of piezoelectric material and composite material, respectively, h_, and hc

are the thickness of piezoceramic layers and composite layers, respectively. [A], [B] and

[D] matrices for composite and piezoelectric lamina are defined as

([Alc' [B]c' [D]¢) = i [(_c]k (1, z, z2)dz (A.20)

where the integrals are through the thickness of composite layers, and

([A]_.[B]¢.[D]¢) = i [Q+],(l.z.z'),z (A.21)

where the integrals are through the thickness of piezoelectric layers.

106



APPENDIX B

Finite Element Characteristics

The rectangular element under consideration is with 24 structural degrees of freedom

(DOF) for bending and membrane plus one extra electrical DOF for each piezoceramic

layer. The unknown displacements, w, w_, wy, wxy, u, and v are defined at each

element node, while the electric potential _b (electrical DOF) is defined for each piezo-

electric layer (see Figure 2.2).

B.1 Transformation between nodal displacements and generalized coordinates

The transformation matrices between nodal displacements and generalized coordi-

nates can be derived by considering an element in its local coordinates. For the bending

deflection, the C 1 conforming element assumes the bending deflection in the element is

distributed as:

w(x, y, t) = al + a2x -4- a3y -4-a4 x2 4- asxy -b a6y 2 -4-a7 x3

-4- asx2y -q-a9xy 2 q- al0Y 3 + anxay + al2xy 3

--k al3x2y 2 @ al4x3y 2 4- al5x2y 3 q- al6x3y 3

(B.1)

=[Hw(x,y)]{a(t)}

where [Hw(x, y)] is the transverse shape function

[Hw(x, y)] = [1, x, y, x 2, xy, y2, x 3, x2y, xy2, y2,
(B.2)

x3 y, x2y 2 , xy 3 , x3y 2, x2y 3 , x3y3],

and {a(t)} is the generalized bending coordinates

{a} T = [al, a2, a3, a4, as, a6, a7, as, a9, al0,
(B.3)

all,al2,al3, a14, a15, a16]

If the vector of the 16 bending nodal displacements is given as

{rOb} T = [Wl, Wzl, tOyl, Wxyl, W2, Wx2, Wy2, U3xy2,
(B.4)

W3, Wz3, Wy3, Wxy3, 104, Wz4, Wy4_ Wzy4]

then equation (B.1) and its derivatives at the four element nodes yield a set of 16 linear

equations,

{Wb} = [Tb] -l{a} (B.5)
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which gives the generalized coordinates from the nodal bending displacements, so does

the bending deflection distribution in the element, as

{a} = [Tb]{Wb} (B.6)

where the transformation matrix between transverse displacements and generalized bend-

ing coordinates, [Tb], is only a function of the coordinates of the four element nodes.

The transformation matrix between inplane displacements and generalized inplane

coordinates can be determined in a similar way. The inplane displacements are assumed

to be bilinear, that is

u(x,y,t) = bl + b2x + b3y + b4xy = [Hu(x,y)]{b(t)}

(B.7)
.(x,y,t) = bs + b6x + bry + bsxy = [H_(z,y)l{b(t)}

where [Hu(x,y)] and [Hv(x,y)] are the inplane shape functions

[Hu(x,y)] - [1,x,y, xy, O,O,O,O]

(B.8)
[Hv(x,y)] = [O,O,O,O,l,x,y, xy]

and {b(t)} is the generalized inplane coordinates

{b} T = [bl, b2, b3, b4, bs, b6, bT, bs] (B .9)

If the 8 inplane displacements at four element nodes are given as

{Wrn} T= [ttl, Vl, U2, Y2, U3, V3, U4, V4] (B.IO)

Then equation (B.7) at the four element nodes yield a set of 8 linear equations,

{wm}=[Tm]-l{b} (B.11)

which gives the generalized coordinates from the nodal inplane displacements, so does

the inplane displacements distribution in the element, as

{b} = [Tm]{Wm} (B.12)

where the transformation matrix between inplane displacements and generalized inplane

coordinates, [Tm], is also only a function of the coordinates of the four element nodes.
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B.2 Transformation between Nodal Displacements and Strains

The transformation between the nodal displacements and strains can be determined

directly from the strain---displacement relation. Substitute equations (B. 1) and (B.7) into

equation (2.22), we obtain the matrix in equation (A.4) as

and

- 02H_/c3x 2 ]

02Hw/OY2 I

2O2HwlOxOY J

"OHulOx l

og,/oy

OHu/Oy + OHv/Oz

(B.13)

(B.14)
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APPENDIX C

Coupling between FEM and BEM

The velocity vector of each element in a constant rectangular BEM model is the

displacement at the center of the element

{_,} = [uo,,]r (C.l)

while in FEM, the displacement vector is

{W}i = [Wi,Wiz,Wiy,Wizy, Ui, Vi]

(C.2)

{W} = [{W}I ,{w}2,{w}3,{w}4] T

If the mesh of FEM model and BEM model on the internal surface of the plate are

identical, then from the displacement shape functions, we have,

IHw(xo,yo)

[T_]= [ 0°

0

Hu(xo,yo)

Hv(xo, yo)
[Tb][T_]}

(c.3)

where
Xl + x2 +X3"bX4

Xo = 4 (C.4)
Yl + Y2 + Y3 + Y4

Yo =
4

with xi and yi are the coordinates of element nodes.

Due to the compatibility of the velocity at the inner surface of the plate, we have

the element in vector {Un} as

Une= {Z,}r[T,]{w} (c.5)

and

(C.6)

where nz, ny, and nz are the components of the unit normal vector of the element plane.
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